
Training HMMs 



Outline

• Parameter estimation

• Maximum Likelihood (ML) parameter 
estimation

• ML for Gaussian PDFs

• ML for HMMs – the Baum-Welch algorithm

• HMM adaptation:

– MAP estimation

– MLLR



Discrete variables

• Suppose that Y is a random variable which can 
take any value in a discrete set X={x1,x2,…,xM}

• Suppose that y1,y2,…,yN are samples of the 
random variable Y

• If cm is the number of times that the yn = xm

then an estimate of the probability that yn

takes the value xm is given by:
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Discrete Probability Mass Function
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Continuous Random Variables

• In most practical applications the data are not 
restricted to a finite set of values – they can take 
any value in N-dimensional space

• Simply counting the number of occurrences of 
each value is no longer a viable way of estimating 
probabilities…

• …but there are generalisations of this approach 
which are applicable to continuous variables –
these are referred to as non-parametric methods



Continuous Random Variables

• An alternative is to use a parametric model
• In a parametric model, probabilities are defined 

by a small set of parameters
• Simplest example is a normal, or Gaussian

model
• A Gaussian probability density function (PDF) is 

defined by two parameters
– its mean , and 
– variance 



Gaussian PDF

• ‘Standard’ 1-dimensional Guassian PDF:

– mean =0

– variance =1
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Gaussian PDF
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Gaussian PDF

• For a 1-dimensional Gaussian PDF p with 
mean  and variance :

   
 













 









2
exp

2

1
,|

2
x

xpxp

Constant to ensure area 
under curve is 1 Defines ‘bell’ shape



More examples
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Fitting a Gaussian PDF to Data

• Suppose y = y1,…,yn,…,yT is a sequence of T
data values

• Given a Gaussian PDF p with mean  and 
variance , define:

• How do we choose  and  to maximise this 
probability?
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Maximum Likelihood Estimation

• Define the best fitting Gaussian to be the one 
such that p(y|,) is maximised.

• Terminology:
– p(y|,) as a function of y is the probability

(density) of y
– p(y|,) as a function of , is the likelihood of 
,

• Maximising p(y|,) with respect to , is 
called Maximum Likelihood (ML) estimation 
of ,



ML estimation of ,

• Intuitively:
– The maximum likelihood estimate of  should be

the average value of y1,…,yT, (the sample mean)

– The maximum likelihood estimate of  should be 
the variance of y1,…,yT. (the sample variance)

• This turns out to be true:  p(y| , ) is 
maximised by setting:
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First note that maximising p(y) is the same as maximising log(p(y))

At a maximum:
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ML training for HMMs

• Now consider

– An N state HMM M, each of whose states is 
associated with a Gaussian PDF

– A training sequence y1,…,yT

• For simplicity assume that each yt is 1-
dimensional



ML training for HMMs
• If we knew that:

– y1,…,ye(1) correspond to state 1

– ye(1)+1,…,ye(2) correspond to state 2

– :

– ye(n-1)+1,…,ye(n) correspond to state n

– :

• Then we could set the mean of state n to the 
average value of ye(n-1)+1,…,ye(n)



ML Training for HMMs

y1,…,ye(1), ye(1)+1,…,ye(2), ye(2)+1,…,yT

Unfortunately we don’t know that ye(n-1)+1,…,ye(n)

correspond to state n…



Solution

1. Define an initial HMM – M0

2. Use the Viterbi algorithm to compute the optimal 
state sequence between M0 and y1,…,yT

y1 y2 y3 …    …   yt   …    yT



Solution (continued)

• Use optimal state sequence to segment y
y1 ye(1) ye(1)+1 …    …  ye(2) …  yT

 Reestimate parameters to get a new model M1



Solution (continued)

• Now repeat whole process using M1 instead of 
M0, to get a new model M2

• Then repeat again using M2 to get a new model 
M3

• ….

p(y | M0)  p(y | M1)  p(y | M2)  ….  p(y | Mn) ….



Local optimization

p(y|M)

MM0 M1…Mn

Local optimum
Global optimum



Baum-Welch optimization

• The algorithm just described is often called 
Viterbi training or Viterbi reestimation

• It is often used to train large sets of HMMs

• An alternative method is called Baum-Welch
reestimation

• Reestimation of mean value for state i



Baum-Welch Reestimation

y1 y3 y4 y5y2 yt+1yt yT

P(si | yt) = t(i)



‘Forward’ Probabilities

y1 y3 y4 y5y2 yt+1yt yT



‘Backward’ Probabilities

y1 y3 y4 y5y2 yt+1yt yT
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‘Forward-Backward’ Algorithm

yTy1 y3 y4 y5y2 yt+1yt



‘Forward-Backward’ Algorithm



Re-estimate Transition Probabilites



Adaptation

• A modern large-vocabulary continuous speech 
recognition system has many thousands of 
parameters

• Many hours of speech data used to train the 
system (e.g. 200+ hours!)

• Speech data comes from many speakers

• Hence recogniser is ‘speaker independent’

• But performance for an individual would be 
better if the system were speaker dependent



Adaptation

• For a single speaker, only a small amount of 
training data is available

• Viterbi reestimation or Baum-Welch 
reestimation will not work

• Adaptation:

– the problem of robustly adapting a large number 
of model parameters using a small amount of 
training data



‘Parameters vs training data’

Performanc
e

Number of parameters

Larger training set

Smaller training set



Adaptation

• Two common approaches to adaptation (with 
small amounts of training data)

– Bayesian adaptation (also known as MAP 
adaptation (MAP = Maximum a Posteriori))

– Transform-based adaptation (also known as MLLR 
(MLLR = Maximum Likelihood Linear Regression))



Bayesian (MAP) adaptation

• MAP estimation maximises the posterior 
probability of M given the data y, i.e., P(M | y)

• From Bayes’ Theorem:

• P(M) is the prior probability of M

• p(y | M) is the likelihood of the adaptation 
data on M



Bayesian (MAP) adaptation

• Uses well-trained, ‘speaker-independent’ 
HMM as a prior P(M) for the estimate of the 
parameters of the speaker dependent HMM

• E.G:
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Bayesian (MAP) adaptation

• Intuitively, if the adaptation data set y is big, then the MAP 
adapted model will be biased towards y, so  will be small

• Conversely, if there is very little adaptation data, the MAP 
model will be biased towards the prior, so  will be big

MAP model Prior model ‘Speaker-
dependent’ model


